

Insurance Collaboration to Save Lives

seek answers, save lives, mitigate loss

The FDA's call for "all hands on deck" for the "catastrophic" decline in U.S. longevity and how proactive insurance leaders can help

The Insurance Collaboration to Save Lives in one page

is a non-profit led by volunteer insurance leaders ...on mission to save lives and mitigate loss ...to empower global insurers to save money & lives

Board of Directors

- Former President of Progressive
- Actuary & L/H Regulator State of Georgia
- Public Pension Board Chair, Indiana INPRS

- EVP & CFO
 Specialty &
 Life Insurance
- **Ins. Attorney,** former ins. AGC
- Insurance
 Entrepreneur
 & former II
 #1 equity analyst

Steering Committee

 Actuaries, agents, analysts, data scientists, executives, technologists & underwriters as well as clinicians, researchers, MDs, MPH, RNs, and PhDs

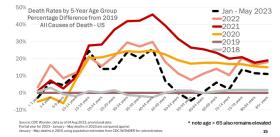
Mortality is elevated

 Working age mortality continues ~20% excess (age 15-45, CDC 2023)

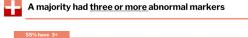
Morbidity is up too

Disability is at all-time record levels in 2023 (BLS, 2023)

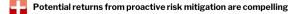
Many conditions elevated

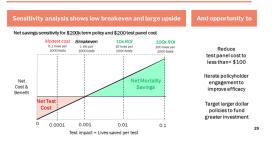

- Major rise in heart, stroke, liver & kidney deaths (CDC, as of 2022)
- Similar findings in ICD diagnoses (INEK, 2022)

..with low cost


screening, testing, and

triage for insureds




Our advisory team identified five risk profiles for intervention

Disclaimer


The Insurance Collaboration to Save Lives is a non-profit corporation, formed for public benefit to engage and empower global life and disability insurers to take proactive steps screen, test, and triage, to help policyholders improve health, and save lives. This presentation is intended for educational purposes only and does not replace the independent professional judgment of any licensed professional. Statements of fact and opinions are those of the participants and presenters individually and not of any employers, sponsors, partners, or other affiliates or the Insurance Collaboration to Save Lives. The Insurance Collaboration to Save Lives does not assume responsibility for the content, accuracy, or completeness of the information presented. This session may be recorded and published in various media, including print, audio, and video formats without further notice.

I. The FDA's call for "all hands" and how insurers can help.

The FDA has sounded the alarm on "catastrophic" mortality

The FDA called for "all hands on deck" to address mortality

Dr. Robert M. Califf 📀 🏧

@DrCaliff FDA

I believe that we need to seriously examine our level of accountability and changes that we can make to help what needs to be an "all hands on deck" effort to continue and amplify the improvement in life expectancy discussed in CDCs latest report.

1:52 PM · Nov 30, 2023 · **611** Views

The FDA is asking for help from industry and the public...

Dr. Robert M. Califf 🧼 🔼

@DrCaliff_FDA

The government, industry, and the public all have a role to play in improving life expectancy. Let's get to it.

1:52 PM · Nov 30, 2023 · **934** Views

So what are the "catastrophic trends" the FDA is seeing?

Today U.S. mortality remains elevated, even post COVID

✓ Show Months | CSV | JSON | ▲

Weekly, All Causes, Age-Adjusted (US Standard Population 2000)

Excess Mortality (%)

Projected 95% PI

Substantial increase

30%

20%

10%

-10%

9%

-20%

Oct Nov Dec 2023 Feb Mar Apr May Month of Year

Sources: CDC.gov, Census.gov

reporting lag

Aug 2023

excess = 7.6%

USMortality.com

Sources: CDC.gov, Census.gov

20%

-109

-20%

-30% -40%

Month of Year

As always at time of crisis...

Insurance Collaboration to Save Lives

seek answers, save lives, mitigate loss

...insurers are here to help.

What is the Insurance Collaboration to Save Lives?

Insurance leaders saw elevated mortality and came together

life annuity specialist

As Covid Rules Are Relaxed, Insurers Face 'Trillion-Dollar Question'

Everyone wants to move past Covid. But here are some worrying numbers that life insurers should be paying attention to.

Stirling convenes group to address excess mortality, seeks industry partners

Leaders of the Insurance Collaboration to Save Lives

Directors & Officers

Richard H. Watts, Board member at Farmers Group, Inc., Apaly Health and Roost, advisor to numerous PE & VC backed ventures, and former President of Direct Group at Progressive Insurance.

<u>Michael Grasher</u>, **EVP & CFO at The Fortegra Group**, specialty multi-line insurer, former CFO at publicly traded work comp company, previously a Managing Director and multi-line insurance analyst at Piper Jaffray.

<u>Bret Swanson</u>, Chairman of the Indiana Public Retirement System (INPRS), President of Entropy Economics, LLC, and non-resident senior fellow at the American Enterprise Institute.

Teresa R. Winer, F.S.A., M.A.A.A. L&H Actuary for the State of Georgia's Commissioner of Insurance, member of AAA's NGE Working Group, former VP & two-term SOA board member and GSU RMF board

Noelle H. Sproul, Esq. ICSL Corp Secretary, investment lawyer, former Managing Director in the legal department of a large insurance company, and previously, an attorney at Moore & Van Allen.

<u>Josh Stirling.</u> Founder of the Insurance Collaboration to Save Lives, insurance director, advisor and entrepreneur, former chief insurance & partnerships officer, managing director, and *Institutional Investor #1* ranked Wall Street analyst

Team Leaders

Medical & Product

- Steve Cyboran, ASA, FCA
- Edward Loniewski, DO, FACOS, FAOAO
- Tom Lewis, Ph.D.
- Kate Hendricks, M.D. M.P.H.
- Steven Dunlap, MD

Analytics & Research

- Mary Pat Campbell, FSA
- Valerie Chezem, ASA
- Patrick Dooley, analyst
- JR Reyling, MBA, E.E.
- Robert Wright, PhD.

Marketing & Comm

- Marci Sheeran, CLTC, LUTCF
- Mitch Bagley, agent
- Rebecca Richey, agent
- Bryan Barber, technology

International

Adam Chambers, Esq.

...formed a non-profit and studied excess mortality & morbidity

BEST'S NEWS & RESEARCH SERVICE

LIFE INSURANCE

Insurance Execs Form Nonprofit, Seek to Provide Life Insurers With Tests for Policyholders

Developed a new approach to mitigate mortality & morbidity

Think Advisor

How Insurers Can Help Prevent Unexpected Deaths

Unexpected deaths have been rising since the pandemic and could lead to a cascade of costs.

Chief Executive

Screen, Test, Triage: How Life Insurers Can Help Reduce Excess Mortality

This solution is within the industry's grasp and requires no new technology —only CEO leadership to deploy it.

A simple proposal: insurance-led proactive health screening

Proactive insurers that...

Screen, test & triage

In-force policyholders

can mitigate excess mortality & elevated morbidity

An ounce of prevention is tautological in every field...

Health

Save lives and save money.

Do well by doing good.

Actuarial

Use proactive screening to identify insureds to offer health intervention.

Use data to reduce cost & drive ROI

Technology

TL:DR =
Risk Mitigation
> Risk Transfer

Move fast & [save lives]

Momentum is building for the Insurance Collaboration's effort

December 2023

October 2023

October 2023

'Excess mortality' continuing surge causes concerns

Newsweek

Why Are Death and Disability Rising Among Young Americans? | Opinion

November 2023

More Young People Are Dying, Higher Mortality is in the Forecast

The fix may be greater investments in in wellness programs, according to experts.

Greater Health Screenings Could Save Life Insurers Money and Improve Mortality, Group Says

A nonprofit formed by industry executives is proposing insurers test policyholders for a battery of common causes of morbidity.

For links to these and others, please see:

Where does the Insurance Collaboration go from here?

Recruiting global insurers to pilot these initiatives

Recruiting tech & health partners to build solutions Recruiting policy & regulatory partners to accelerate this effort

Insurers can play a leadership role in this catastrophe But to save a million lives, we need your firm to help

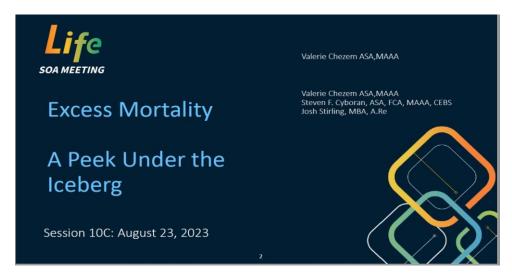
II. What's going on, and how did we get here?

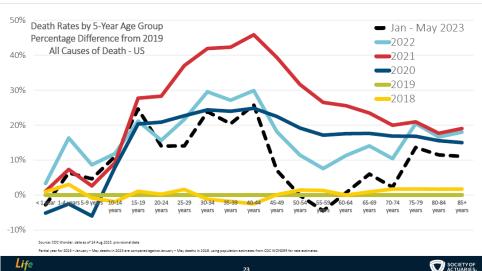
"Excess Mortality: a Peek Under The Iceberg"

Presentation to the Society of Actuaries, Society of Insurance Research, and Bermuda International Long Term Insurance & Reinsurance Meetings Aug & Sept 2023

The executive summary: there are just three things to know

Younger adult mortality in U.S. is ~20% excess, in 2023 *


Morbidity analysis shows wide range of underlying conditions


Insurers who take steps to mitigate, can save money and will save lives

*and reported disability rate – a leading indicator of future mortality – is at all-time highs

A team of volunteers worked for months to answer this

Use this QR code to the full 66-page deck by email right now

also available at:

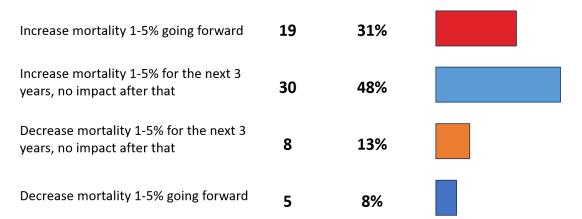
Mortality and morbidity challenges continue even post-COVID

What is happening? Polls at the Society of Actuaries Life Meeting

Actuaries polled in Aug'22 88% think excess mortality continues to 2025+

2022 SOA Life Meeting Poll:

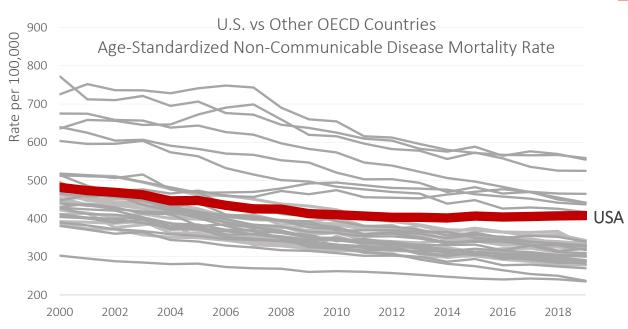
What is the most likely long-term impact of COVID-19 On Group Life mortality in late 2022, into early 2023, and beyond?


Increase mortality 1-5% going forward	29	31%	
Increase mortality 1-5% for the next 3 years, no impact after that	54	57%	
Decrease mortality 1-5% for the next 3 years, no impact after that	11	12%	
Decrease mortality 1-5% going forward	1	1%	

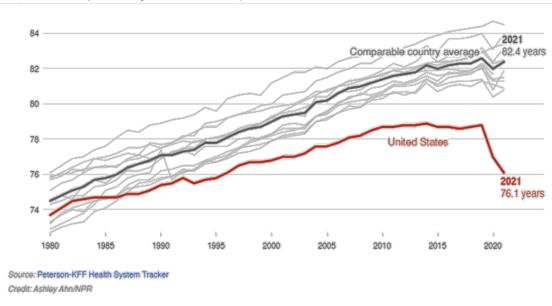
Source: Society of Actuaries polling of meeting attendees at Life Meetings in 2022 and 2023, analysis by ISCL

Actuaries polled in Aug'23 79% think excess mortality continues to 2026+

2023 SOA Live Life Meeting Result:

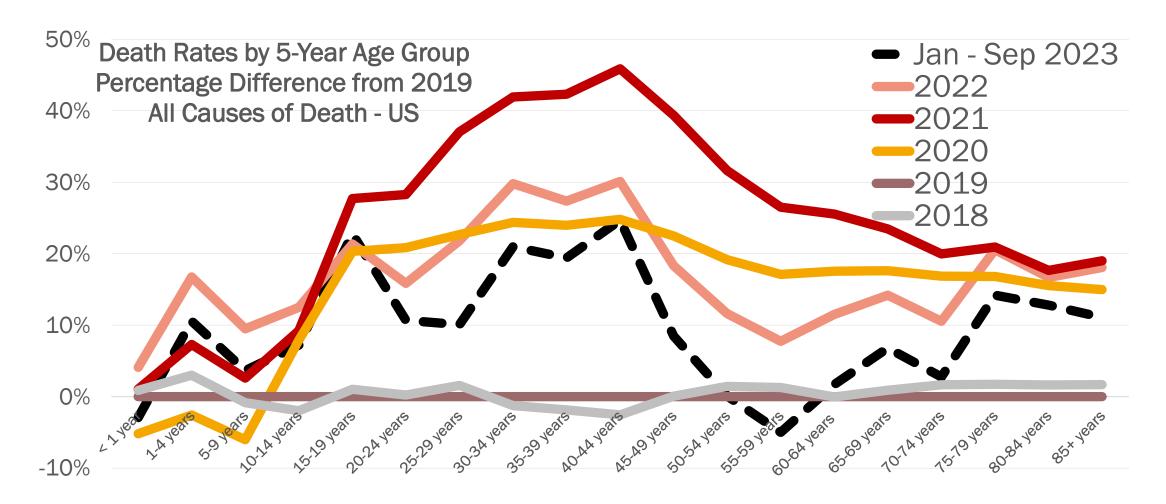

Compared to 2019, what is the most likely long-term impact of the pandemic on the age-adjusted all-cause mortality rate in the US, in 2024 and beyond?

This is because U.S. has long faced health challenges

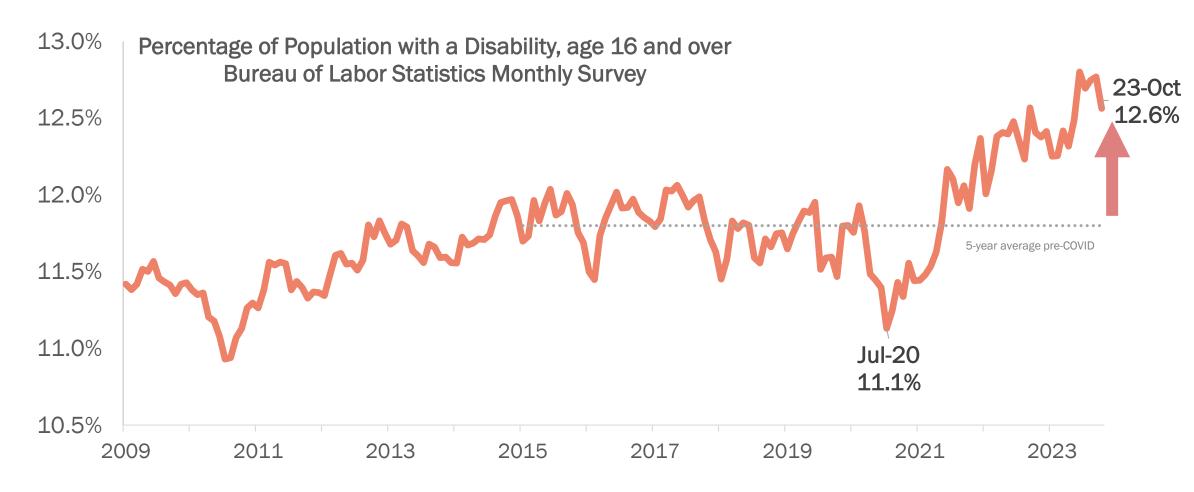

While peers' health <u>improved</u>, U.S. mortality was <u>worsening</u> pre-C19

Source: WHO Global Health Estimates, accessed 15 August 2023, https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-ncd-mortality-rate Excludes communicable diseases like the flu and external causes of death such as homicide and car accidents.

During the pandemic U.S. mortality was worse than peers


Period Life Expectancy, U.S. vs. Comparable Countries

Source: https://www.npr.org/sections/health-shots/2023/03/25/1164819944/live-free-and-die-the-sad-state-of-u-s-life-expectancy


This appears driven by younger age deaths, particularly 15-45*

Source: CDC Wonder, data as of 3 Dec 2023, provisional data
Partial year for 2023 – January – September deaths in 2023 are compared against
January – September deaths in 2019, using population estimates from CDC WONDER for rate estimates.

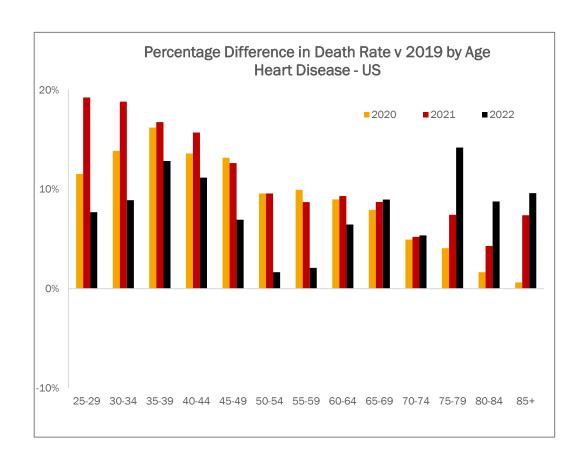
Morbidity trends are also tragic, with disability at record levels

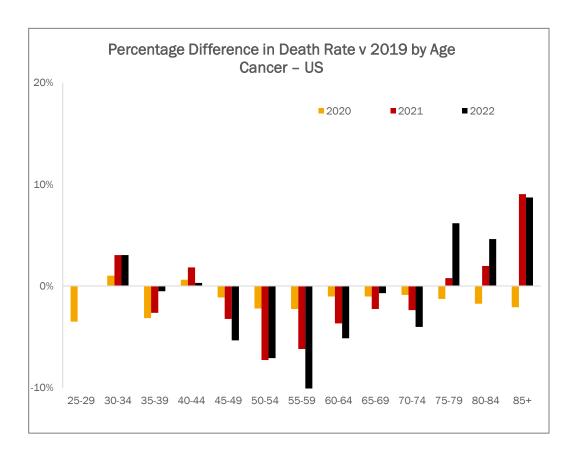
Source: Bureau of Labor Statistics, via St. Louis fed FRED https://fred.stlouisfed.org/graph/?id=LNU00074597 and https://fred.stlouisfed.org/graph/?id=L

Analysis shows many causes, an "iceberg" of health challenges

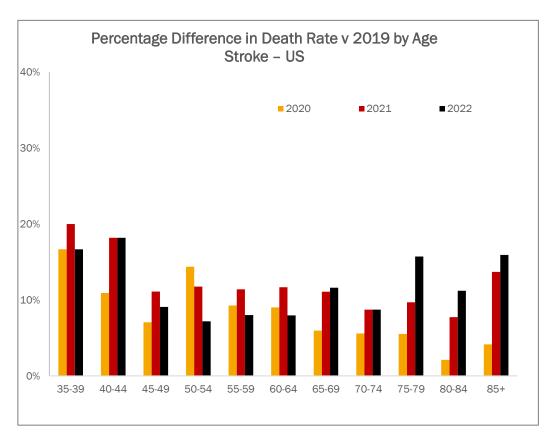
Analysis of U.S. deaths suggests emerging shift in pathology

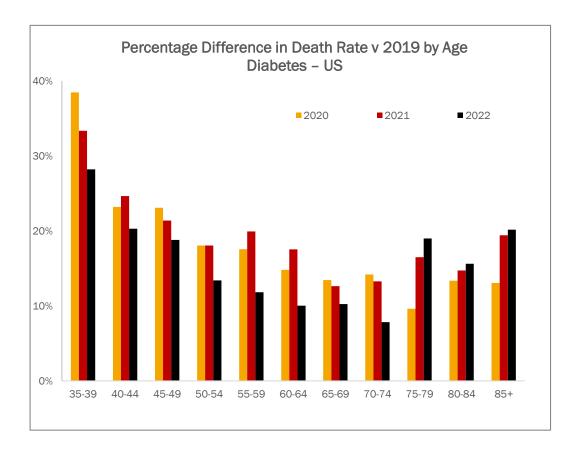
As COVID declined in 2022...


300 Age-Adjusted Death Rate (per 100,000, year 2000 U.S. standard 250 Heart 200 Disease Cancer population) 150 COVID 100 50 0 2006 2008 2020 2022 2024 2026 2028


...Other causes rose, including many that are blood related

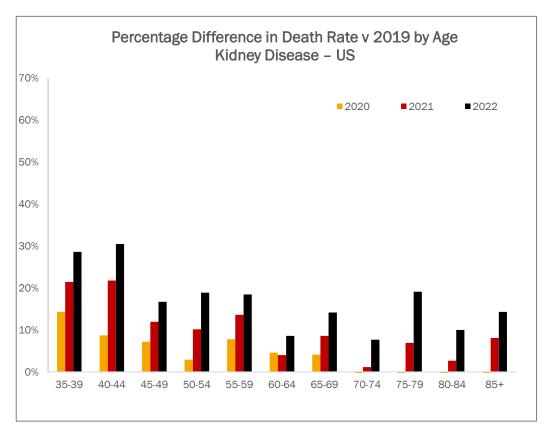
Cause of death data shows increased cardiac mortality at all ages

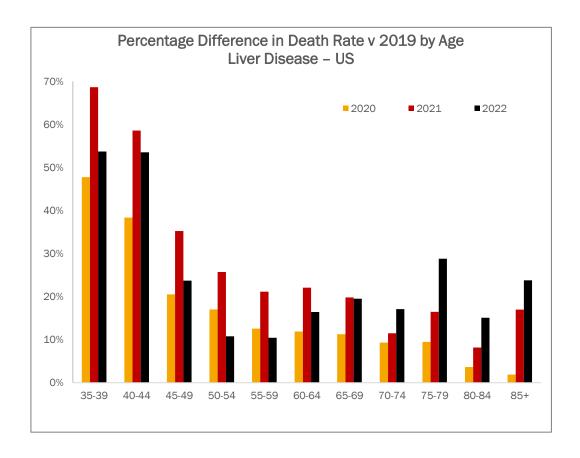




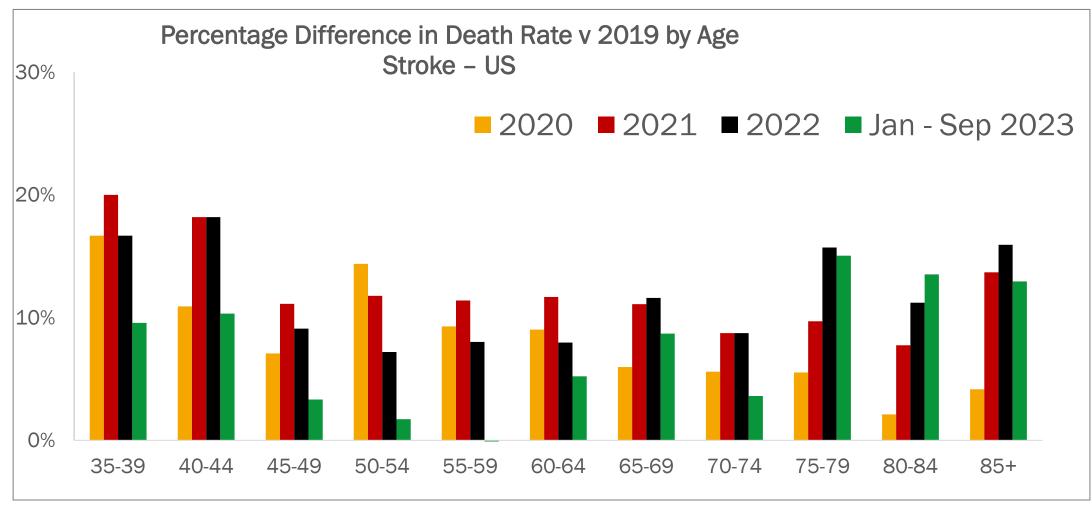
Similar – but greater – rise in other notable pathologies (1/2)

Note change in scale from prior slide





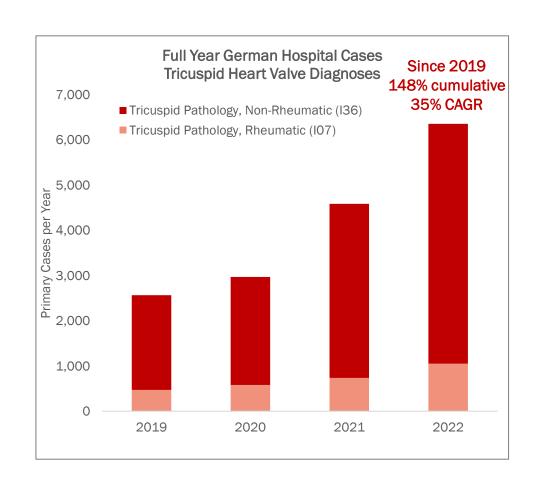
Similar – but greater – rise in other notable pathologies (2/2)

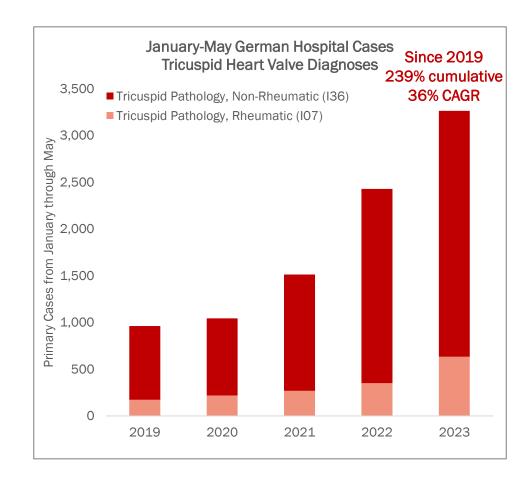

Note change in scale from prior slide

Stroke deaths remain elevated in 2023, across many ages

Source: CDC Wonder, data as of 3 Dec 2023, provisional data, primary cause of death. Note small numbers of deaths and/or data not available or not meaningful at younger ages. Jan – Sep 2023 stroke deaths are compared against the same period in 2019.

Near-real-time German hospital data shows similar signals


INEK German Hospital Data 2019-2022


All Chapters - Top 25 Primary ICDs By Most Elevated 2022 % Signal (Excluding Smallest ICDs)

			2020	2021	2022			% of Total	Excess
	ICD Sub-Chapter ICD Sub-Chapter Description ICD Code ICD Description					P Value	2022 Cases	Cases	Cases Est
Bacteria	A30-A49 Other bacterial diseases A49 Bacterial infection of unspecified site	1.00	1.70	1.80	1.86	-	37,600	0.2%	17,434
& Virus	B25-B34 Other viral diseases B33 Other viral diseases, not elsewhere classified	1.00	2.36	3.67	5.33	-	965	0.0%	784
B25-B34 Othe	B25-B34 Other viral diseases B34 Viral infection of unspecified site	1.00	1.12	1.68	2.66	-	35,562	0.2%	22,215
Cancer	C00-C97 Malignant neoplasms C69 Malignant neoplasm of eye and adnexa	1.00	0.95	1.22	1.22	-	5,442	0.0%	995
	D00-D09 In situ neoplasms D09 Carcinoma in situ of other and unspecified sites	1.00	1.11	1.17	1.24	-	3,784	0.0%	724
Metabolic	E65-E68 Obesity and other overeating E66 Obesity	1.00	0.92	1.11	1.37	-	39,166	0.2%	10,572
	E70-E90 metabolic disorders E88 Other metabolic disorders	1.00	1.17	1.60	1.85	-	4,719	0.0%	2,172
	F50-F59 Behavioral problems with physical disorders and factors F50 Eating disorders	1.00	0.98	1.40	1.26	-	4,003	0.0%	832
Behavioral	F60-F69 personality and behavioral disorders F64 Gender identity disorders	1.00	0.99	1.12	1.21	-	4,670	0.0%	803
	F90 F90 developmental disabilities F94 Pervesive developmental disorders	1.00	0.00	1.24	1.22		1,305	0.0%	242
Heart	105-109 Chronic rheumatic heart diseases 107 Rheumatic tricuspid valve diseases	1.00	1.23	1.57	2.24	-	1,054	0.0%	583
	130-152 Other forms of heart disease 136 Nonrheumatic tricuspid valve disorders	1.00	1.14	1.84	2.53	-	5,303	0.0%	3,208
Lungs	J00-J06 Acute upper respiratory intections J06 Acute upper respiratory intections of multiple and unspecified sites	1.00	0.82	0.73	1.39	-	53,004	0.3%	14,796
	J09-J18 influenza and pneumonia J12 Viral pneumonia, not elsewhere classified	1.00	7.91	16.85	8.46	-	107,943	0.6%	95,190
	J95-J99 Other diseases of the respiratory system J98 Other respiratory disorders	1.00	1.04	1.00	1.38	-	14,502	0.1%	3,980
Joints	M00-M25 arthropathies M00 Pyogenicarthritis	1.00	1.07	1.13	1.21	-	17,396	0.1%	2,979
Maternal &	N80-N98 Non-inflammatory diseases of the female genital tract N87 Dysplasia of cervix uteri	1.00	1.15	1.37	1.35	-	3,788	0.0%	975
Fetal	O94-O99 Other conditions of the gestational period not elsewhere classified O98 Maternal infectious and parasitic diseases cla	1.00	0.52	0.62	1.18	-	6,385	0.0%	957
	P80-P83 Disease states involving the skin and temperature regulation in the fetus and newborn P81 Other disturbances of tem	1.00	1.01	1.12	1.34	0	559	0.0%	142
Other	R00-R09 Symptoms affecting the circulatory system and the respiratory system R05 Cough	1.00	1.28	1.31	2.31	-	6,513	0.0%	3,693
& Unknown	R50-R69 general symptoms R50 Fever of other and unknown origin	1.00	1.10	1.18	2.28	-	17,446	0.1%	9,788
	R50-R69 general symptoms R53 Malaise and fatigue	1.00	0.82	1.00	1.72	-	14,522	0.1%	6,071
	Z00-Z13 People who use the healthcare system for examination and clarification Z11 Special screening examination for infectic	1.00	2.23	3.51	9.63	-	3,054	0.0%	2,737
Misc	Z20-Z29 Individuals with potential health risks related to communicable diseases Z22 Carrier of infectious disease	1.00	9.03	14.22	34.44	-	5,993	0.0%	5,819
COVID	Z80-Z99 Individuals with potential health risks based on family or personal history and certain conditions affecting health status ;	1.00	1.74	4.19	4.91	_	584	0.0%	465

148%+ rise in tricuspid heart valve disorders may be a signal

So what can we do?

Insurers who lead can save money, and will save lives.

Reflecting on continued elevated mortality & morbidity...

we had two simple insights

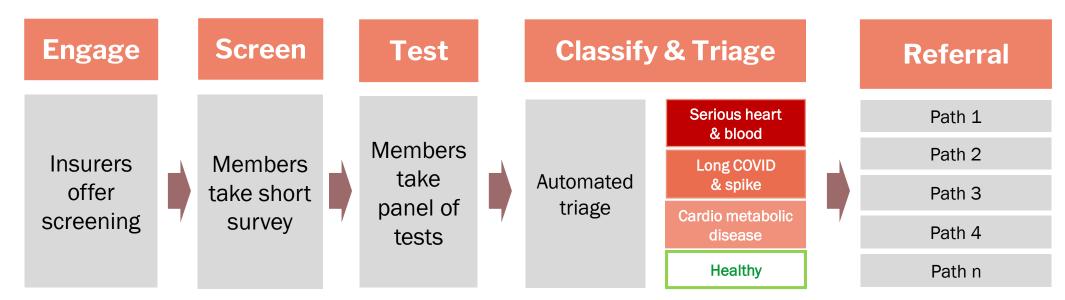
By proactively testing policyholders we can identify those at risk for adverse outcomes

By communicating results and triaging to care insurers can save money, and save lives

The solution? Insurers can

Screen, Test, & Triage

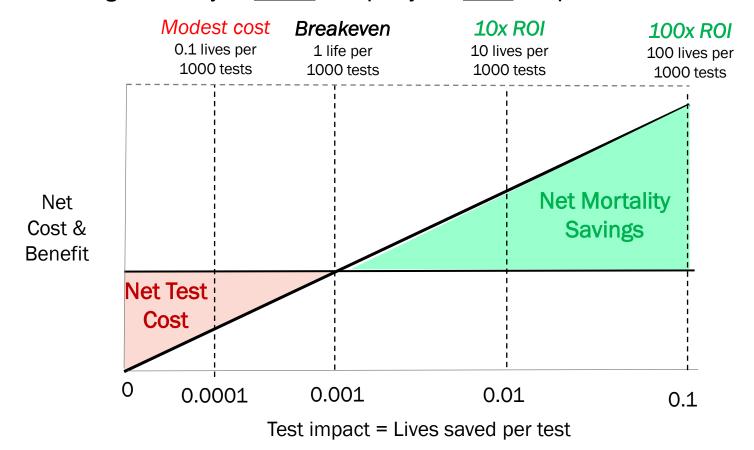
to save money, and save lives.



Proactive, targeted loss mitigation can be powerful

Inforce member, funding for screening & referrals

Proactive engagement to triage to care or lifestyle change can unlock value



Potential returns from proactive risk mitigation are compelling

Sensitivity analysis shows low breakeven and large upside

And opportunity to

Net savings sensitivity for \$200k term policy and \$200 test panel cost

Reduce test panel cost to less than< \$100

Iterate policyholder engagement to improve efficacy

Target larger dollar policies to fund greater investment

Our approach is supported by medical research

High powered studies show biomarkers

Yang et al. Journal of Translational Medicine (2023) 21:471 https://doi.org/10.1186/s12967-023-04334-w Journal of Translational Medicine

RESEARCH

Open Acces

Development and validation of a blood biomarker score for predicting mortality risk in the general population

Abstract

Background Blood biomarkers for multiple pathways, such as inflammatory response, lipid metabolism, and hormonal regulation, have been suggested to influence the risk of mortality. However, few studies have systematically evaluated the combined predictive ability of blood biomarkers for mortality risk.

Methods: We included 267,239 participants from the UK Biobank who had measurements of 28 blood biomarkers and were free of cardiovascular disease (CVD) and cancer at baseline (2006–2010). We developed sex-specific blood biomarker scores for predicting all-cause mortality risk in a training set of 247,503 participants from England and Wales, and validated the results in 19,736 participants from Scotland. Cox and LASSO regression analyses were performed to identify independent predictors for men and women separately. Discrimination and calibration were evaluated by C-index and calibration plots, respectively. We also assessed mediating effects of the biomarkers on the association between traditional risk factors (current smoking, obesity, physical inactivity, hypertension, diabetes) and mortality.

Results A total of 13 independent predictive biomarkers for men and 17 for women were identified and included in the score development. Compared to the lowest tertile of the score, the highest tertile showed a hazard ratio of 536 (95% confidence interval [CI] 5.04–5.71) in men and 4.23 (95% CI] 3.87–4.62) in women for all-cause mortality. In the validation set, the score yielded a C-index of 0.73 (95% CI] 0.72–0.75) in men and 0.70 (95% CI] 0.68–0.73) in women for all-cause mortality; it was also predictive of CVD (C-index of 0.76 in men and 0.79 in women) and cancer (C-index of 0.70 in men and 0.67 in women) mortality. Moreover, the association between traditional risk factors and all-cause mortality was largely mediated by cystatin C, C-reactive protein, 25-hydroxyvitamin D, and hemoglobin AIC.

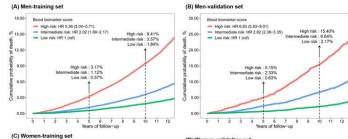
Conclusions We established sex-specific blood biomarker scores for predicting all-cause and cause-specific mortality in the general population, which hold the potential to identify high-risk individuals and improve targeted prevention

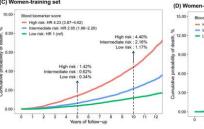
...correlate with long-term all-cause mortality

Table S4. Associations of blood biomarkers with all-cause mortality for men and women in the training set

		Men		Women	ı
	•	HR (95% CI) ^a	P value	HR (95% CI) ^a	P value
CysC	Age-adjusted model	1.31 (1.29-1.34)	< 0.0001	1.37 (1.34-1.41)	< 0.0001
CRP	Age-adjusted model	1.31 (1.28-1.34)	< 0.0001	1.29 (1.25-1.33)	< 0.0001
GGT	Age-adjusted model	1.26 (1.24-1.29)	< 0.0001	1.20 (1.17-1.23)	< 0.0001
ALP	Age-adjusted model	1.22 (1.19-1.24)	< 0.0001	1.16 (1.12-1.20)	< 0.0001
HbA1c	Age-adjusted model	1.21 (1.19-1.23)	< 0.0001	1.18 (1.15-1.21)	< 0.0001
Glucose	Age-adjusted model	1.15 (1.13-1.17)	< 0.0001	1.12 (1.09-1.15)	< 0.0001
SHBG	Age-adjusted model	1.13 (1.11-1.16)	< 0.0001	0.98 (0.95-1.01)	0.98
AST	Age-adjusted model	1.10 (1.07-1.12)	< 0.0001	1.10 (1.07-1.14)	< 0.0001
Calcium	Age-adjusted model	1.06 (1.04-1.08)	< 0.0001	1.05 (1.02-1.08)	0.0007
TP	Age-adjusted model	1.05 (1.03-1.07)	< 0.0001	1.05 (1.02-1.08)	0.0022
Phosphate	Age-adjusted model	1.03 (1.01-1.06)	0.0017	0.97 (0.94-1.00)	0.06
DBIL	Age-adjusted model	1.02 (0.99-1.04)	0.13	1.04 (1.00-1.07)	0.03
Urate	Age-adjusted model	1.02 (0.99-1.04)	0.06	1.18 (1.14-1.21)	< 0.0001
TG	Age-adjusted model	1.01 (0.99-1.03)	0.48	1.13 (1.09-1.16)	< 0.0001
ALT	Age-adjusted model	0.99 (0.98-1.02)	0.88	1.05 (1.02-1.09)	0.0007
Testosterone	Age-adjusted model	0.98 (0.96-1.00)	0.08	1.09 (1.05-1.12)	< 0.0001
Creatinine	Age-adjusted model	0.96 (0.94-0.97)	< 0.0001	1.03 (0.99-1.06)	0.06
TBIL	Age-adjusted model	0.91 (0.89-0.93)	< 0.0001	0.94 (0.91-0.97)	0.0003
HDL-C	Age-adjusted model	0.91 (0.89-0.92)	< 0.0001	0.84 (0.82-0.87)	< 0.0001
ApoA1	Age-adjusted model	0.90 (0.88-0.92)	< 0.0001	0.87 (0.84-0.89)	< 0.0001
Urea	Age-adjusted model	0.90 (0.88-0.92)	< 0.0001	0.99 (0.97-1.03)	0.94
ApoB	Age-adjusted model	0.88 (0.87-0.90)	< 0.0001	0.93 (0.90-0.96)	< 0.0001
FT	Age-adjusted model	0.88 (0.86-0.90)	< 0.0001	1.08 (1.05-1.12)	< 0.0001
IGF-1	Age-adjusted model	0.85 (0.84-0.87)	< 0.0001	0.89 (0.86-0.92)	< 0.0001
LDL-C	Age-adjusted model	0.85 (0.84-0.87)	< 0.0001	0.89 (0.86-0.91)	< 0.0001
TC	Age-adjusted model	0.85 (0.84-0.87)	< 0.0001	0.86 (0.84-0.89)	< 0.0001
ALB	Age-adjusted model	0.82 (0.80-0.84)	< 0.0001	0.86 (0.83-0.88)	< 0.0001
25(OH)D	Age-adjusted model	0.80 (0.78-0.81)	< 0.0001	0.82 (0.79-0.84)	< 0.0001

Abbreviations: HR, hazard ratio; CI, confidence interval; CRP, C-reactive protein; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; IGF-1, insulin-like growth factor-1; FT, free testosterone; SHBG, sex hormone-binding globulin; HbA1c, hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; ALP, alkaline phosphatase; TBIL, total bilirubin; DBIL, direct bilirubin; TP, total protein; ALB, albumin; CysC, cystatin C; 25(OH)D, 25-hydroxyvitamin D.


and multi-variate models show large lift


Table 1 (continued

SD, standard deviation; BMI, body mass index; MET, metabolic equivalent; IQR, interquartile range; CRP, C-reactive protein; TC, Iotal cholesterol; TG, triglycerides; IDLC, love-density lipoprotein cholesterol; Apolit, Apolit, Apolitoprotein B, ISC-1, Insulini-lile growth factor-1; FT, free testorence; SHBG, ex-hormone-binding jobulin; Hals It, emboglish in AL Ed, Jalanien aminiotransferase; AST, sapartate aminiotransferase; GGT, gamma-glutarnyftransferase; ALP, alkaline phosphatase; TBIL, Iotal bilirubin; DBIL, direct bilirubin; TP, Iotal protein; ALB, albumin; CysC, cystatin C, 25IOHIO, 3-budrooxidanii.

^a The totals did not sum to 100% due to small proportions of participants choosing "prefer not to answer

^b 25(OH)D was adjusted for seasonality and calcium was adjusted for albumin

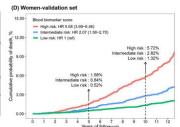


Fig. 1 Cumulative probability of death by tertiles of the blood biomarker score in the training and validation sets for men and women

^a HR per 1-SD increase in log-transformed biomarker concentration.

We developed a prototype, we offered to our members

Infection, immune & other Heart & kidney disease Cardiac & blood **Inflammation Injury Event risk** Cardiometabolic disease **Immune System & Other** Homocysteine hs CRP **D-Dimer** Complete blood panel White blood cells Lipoprotein (a) LP PLA2 Troponin, hs Lipids / Cholesterol panel Monocytes Myeloperoxidaise • **NT ProBNP** Triglycerides / HDL Monocytes/HDL Lipids fractional ion Neutrophils/Lymphocyte Glucose Vitamin D A1C COVID antibodies (quantitative) Albumin Albumin/Creatine

Prototype panel developed through consultation with ICSL's medical advisory committee & lab testing done by Quest Diagnostics and LabCorp

The biomarkers we selected are strong predictors of an increase or decrease in all-cause mortality, in numerous studies*

	Inflammation hsCRP			Cardiac Injury			Cardiac Event Risk			
Sex			D-dimer	Tropon	Troponin NT P		Homocysteine	ine Lipoprotein A		
Male	+24% ¹ , +18% ²									
Female	+19%	% ¹ , +6% ²								
Combined	+35%³, +29%⁴		+ 24 % ⁴	+32%	+469	% ³ , + 39 % ⁴	+22% ⁴ ,+240% ⁵ *		+9%6	
	Cardiometabolic Disease						Immune System & Other			
Sex	LDL Size	UACR	A1c	TG	TG/HDL	Vitamin D	Monocytes / HDL	WBC	NLR	
Male		- 17 %¹	+69%8, +10%1	+6%9		-16% ¹				
Female		-11% ¹	+ 71 % ⁸ , + 3 % ¹	+34%9		-13% ¹				
Combined	-26 % ⁷				+827%10*	+57%11 **	+19%12	+20%13	+44%14	

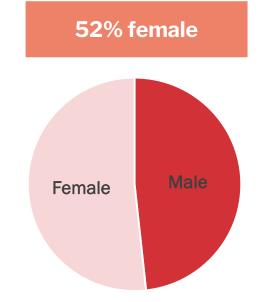
Notes

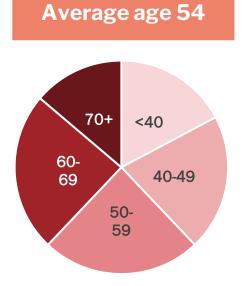
Please see the following slide for study citations for studies 1-14.

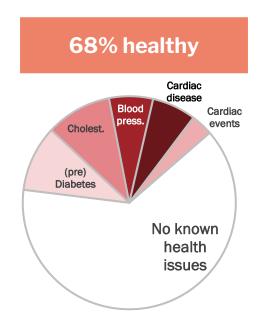
^{*} Selected models adjusted for sex, age, other health factors, & studied biomarkers, not all are all-cause mortality (Homocysteine, TG/HDL)

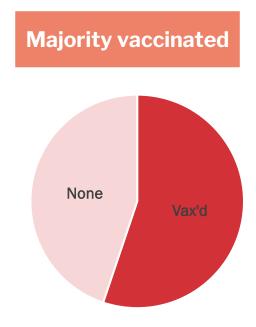
^{**}Low vitamin D

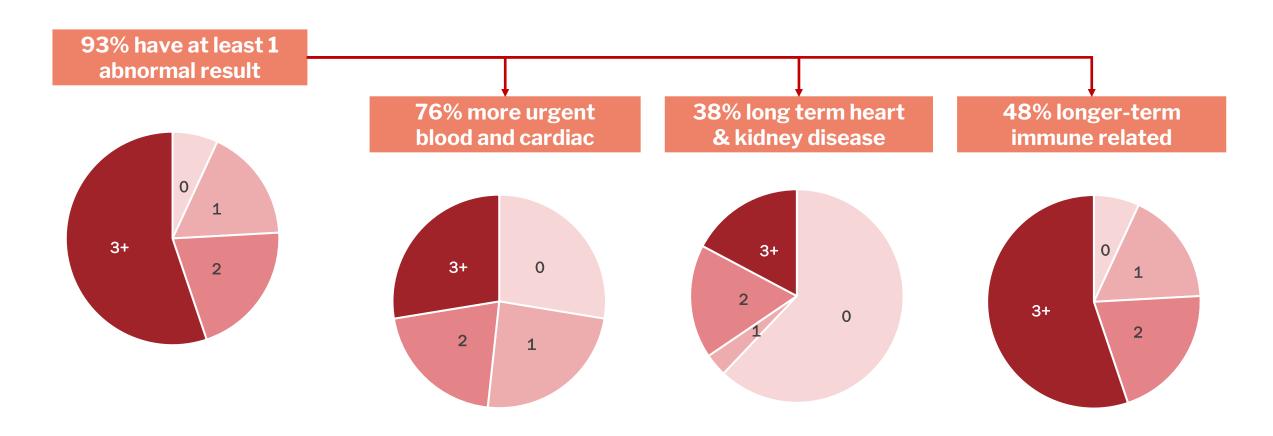
Table of references


Referenced studies showing biomarkers' predictive capacity


- 1. Yang et al. **Journal of Transl. Med.** (2023) 21:471
- 2. Singh-Manoux **CMAJ** 2017, M'13;189(10):E384-E390 *5 year/total study
- 3. Zehelius, et. al. **N Eng J Med** 2008:358:2107-16
- 4. Wang, et. al. **N Engl J Med**. 2006 D'21 355(25):2631-9
- 5. de Ruijter. et al. **BMJ 2009**: 338:a3083 * 85 y/old CVD mortality
- 6. Amiri. N Eng J Med 2008: European Journal of Epidemiology (2023). 38:485–499
- 7. Fischer, et. al. **PLoSMed** 11(2):e1001606 * If large
- 8. Cavero-Redondo, et. al. **BMJ Open** 2017:7:e015949. * Meta: >6.5/9% non/diabetic
- 9. Huang, et. al. **N Eng J Med** 2006; 355(25):2631-9
- 10. Hyang-Rae, et. al. Clinica Chimica Acta. 520 (2021) 29-33 *vs Framingham CVD risk score
- 11. Schottker, et. al. **BMJ** 2014:348:g3656 * if low
- 12. Jiang, et. al. **Lipids in Health and Disease** (2022) 21:30
- 13. Gillum, et. al. **Ann Epidemiol** 2005; 15:266–271
- 14. Gu, et. al. **Front. Cardiovasc. Med**, 12 May 2022

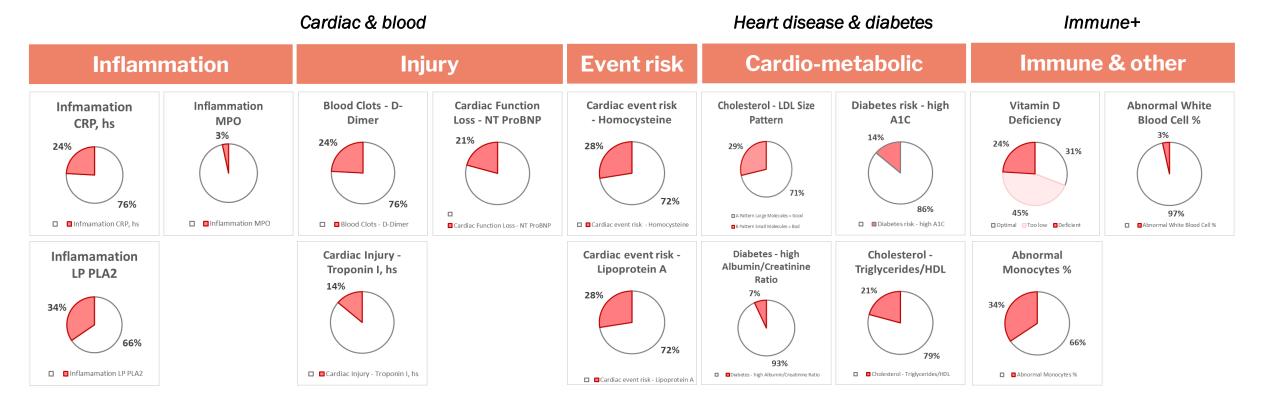



Our pilot was balanced by age, gender and health status



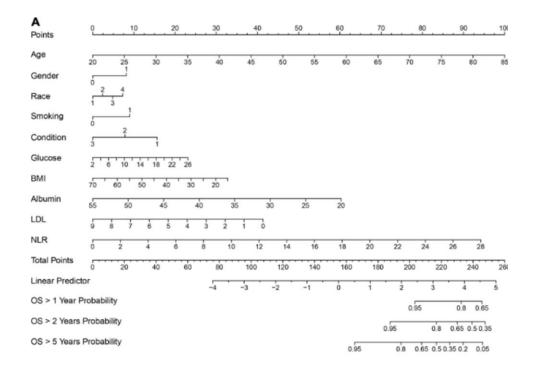
What we found: 93% in our pilot had at least 1 abnormal result

Note: #s are number of biomarkers determined "abnormal" per Quest Diagnostic and/or Healthmatters.io


A majority had three or more abnormal markers

Note: #s are number of biomarkers determined "abnormal" per Quest Diagnostic and/or Healthmatters.io

All biomarkers had at least one finding, but some found many


At scale, data science can power models to further optimize

Output from biomarker model – 7.5x lift

(B) Men-validation set 30.00 Blood biomarker score High risk: HR 6.83 (5.83–8.01) High risk: 15.40% Intermediate risk: HR 2.82 (2.38–3.35) Intermediate risk: 6.64% Low risk: HR 1 (ref) Low risk: 2.17% High risk : 5.15% Intermediate risk: 2.33% Law risk : 0.63% 0.00 11 Years of follow-up

Development and validation of a blood biomarker score for predicting mortality risk in the general population Yang et al. Journal of Translational Medicine (2023) 21:471

Multi-factor risk calculator with AUC of <u>0.84</u>

The Core Role of Neutrophil–Lymphocyte Ratio to Predict All-Cause and Cardiovascular Mortality: A Research of the 2005–2014 National Health and Nutrition Examination Survey Gu, et. al. Front. Cardiovasc. Med., 12 May 2022

Our advisory team identified five risk profiles for intervention

Signs of possibly serious cardiac concerns

14% had 3+ markers of cardiac or circulatory inflammation or injury

This includes: hs CRP (inflammation) d-dimer (blood clots) troponin/ntprobnp (injury)

Pilot data consistent with public data sets = possible widespread blood & cardiac issues

Identify and refer for medical diagnosis & care.

Presence of easily addressed cardiac event risk factor

28% had high

Homocysteine,

a risk-factor for

Typically caused by

B12, folic acid) and

genetic factors

and significant

vitamin deficiency (B6,

Homocysteine is toxic

contributor to heart

attacks/stroke risk.

Identify those who need

& send them B complex.

heart attacks

Presence of easily addressed immune risk factor

24% Vitamin D deficient and 69% were below optimal levels

Low levels of Vit. D worsen many immune, heart & other issues.

Most in U.S. need daily supplement of Vitamin D, some races, regions, seasons especially.

Identify those who need & send them Vitamin D..

Signs of lifestyle diseases & changes needed

17% had 3+ markers of heart or kidney disease

This includes: TG/HDL, LDL size, A1C, glucose

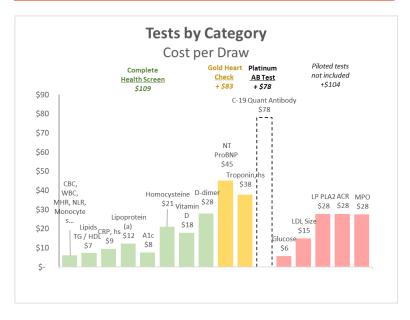
Lifestyle diseases need lifestyle solutions, changes to diet, exercise, fasting, etc.

Provide coaching & apps for lifestyle change.

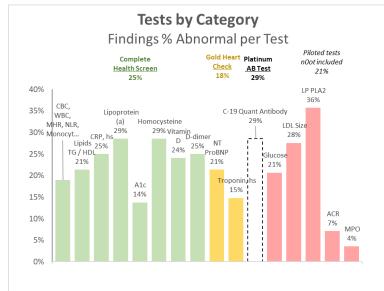
Signs of immune signals which may be COVID related

34% elevated monocytes, possibly related to C19

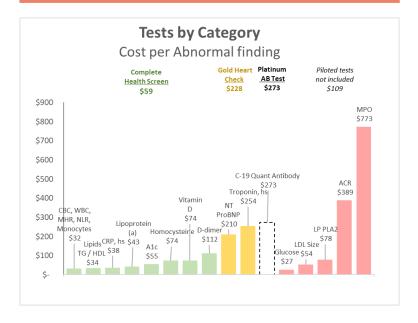
28% had very high C19 antibody levels (14x to 41x median).


Abnormally high antibodies may be proxy for acute, long, or other C19 risk, study is needed.

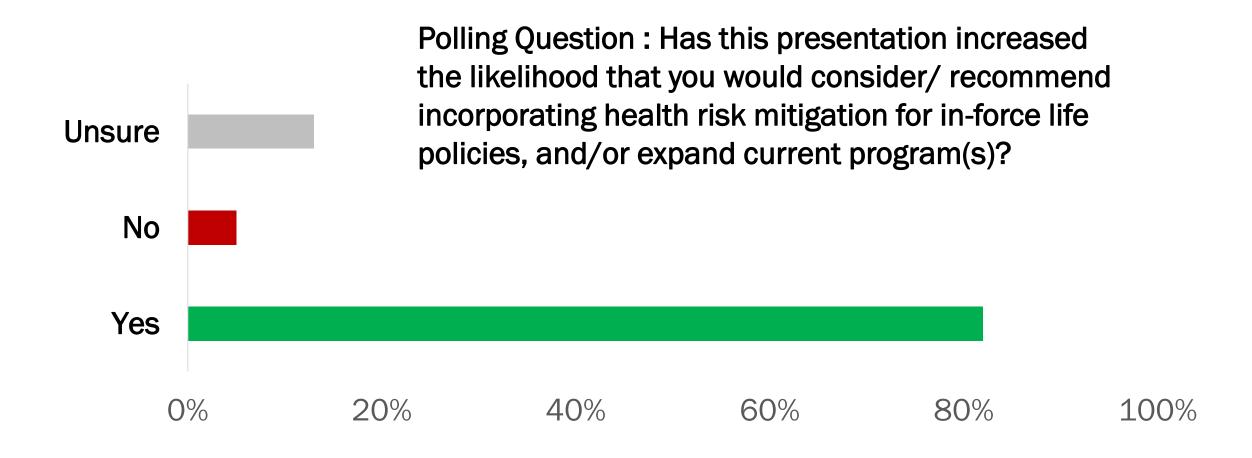
If unclear / long COVID symptoms are present, tests may help diagnose.



After pilot learnings, we developed a high impact ~\$100 panel


We created three packages...

...based on rate of findings


...balanced with cost

The Complete Health Screen will cost ~\$100, the Gold Heart Check ~\$175 and the Platinum C19 AB test ~\$250

We asked actuaries what they thought and were encouraged...

Let's return to the beginning: the three things to know

Younger adult mortality in U.S. is ~20% excess, in 2023 *

Morbidity analysis shows wide range of underlying conditions

Insurers who take steps to mitigate, can save money and will save lives

*and reported disability rate – a leading indicator of future mortality – is at all-time highs

So where does this leave us?

1

Younger adult mortality in U.S. is ~20% excess, in 2023 *

2

Morbidity analysis shows wide range of underlying conditions

3

Insurers who invest in loss mitigation, can save money and will save lives

The tragedy of <u>elevated mortality</u> <u>and morbidity</u> is real.

Many pathologies and cardiac, circulatory & metabolic issues appear common

We found 1 in 7 w/ 3+ blood & cardiac risk markers.

A majority also had serious vitamin deficiencies

Insurers can find at risk for ~\$100 per test panel

Targeted care can <u>reduce</u> <u>mortality and morbidity</u> Insurers who lead, can save money, and will save lives.

We have great momentum but to save a million lives, we need your help – please join us today!

Insurers who lead, can save money, and will save lives.

Join us today.

Register to get our deck by email

Contact
Josh Stirling

Founder and President

Insurance Collaboration to Save Lives

email: josh@insurancecollaboration.org

call: +1.917.620.0944 mobile book: <u>calendly.com/josh-stirling-1</u> web: www.insurancecollaboration.org